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Abstract 

A non-Gaussian model as a function of Gaussian process is developed in this paper for Indian 

monsoon rainfall time series. The functions of a Gaussian process are the Hermite polynomials. 

The unknown coefficients of the Hermite polynomials are found with the help of the first four 

moments of the given data. Since the probability density function of the Gaussian process is 

known, the non-Gaussian density function for the rainfall process is found by using the 

transformation on the known Gaussian density function numerically. Sample histogram of the 

data and the non-Gaussian density function are compared graphically along with the Gaussian 

density function. This clearly justifies that the non-Gaussian density better compares with the 

data distribution. This exercise has been done on the four broad regions of India identified by 

Indian Meteorological Department (IMD) and also for one subdivision of Karnataka. It has been 

observed that at 5% significance level, this model is able to reproduce the probability structure of 

the rainfall time series at different spatial scales studied. 
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1. Introduction 

 
In many applications, we come across non-Gaussian time series such as rainfall, earthquake etc. 

Modeling of such time series will be of at most importance. Most commonly used assumption for 

this kind of series would be stationarity and Gaussianness. The advantage of this assumption will 

be using Gaussian model and its characteristics. Hence, when any time series is given it is 

assumed that the data is stationary and Gaussian to make further analysis simple. However with 

the nature of skewness and the kurtosis, it can be easily shown that the time series data is non-

Gaussian. Thus the non-Gaussianess cannot be overlooked, if sometimes stationarity is.  If a non-

Gaussian model is to be proposed for the given time series, then it is preferable to completely 
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define it in terms of the first few important moments and the power spectral density function of 

the given time series. But this can be done only with Gaussian process. Hence the 

transformations on the Gaussian process can be considered as a non-Gaussian model. This 

chapter presents a non-Gaussian simulation technique developed during the course of this 

research. This simulation method is based on measured samples and known characteristics of the 

system input and output. First, static transformation techniques are developed to simulate non-

Gaussian realizations by transforming the underlying Gaussian time or auto-correlation sample.  

 

The target probability density function (PDF) is achieved by selecting a nonlinear static 

transformation, but unavoidably alters the power spectrum. The Correlation alteration methods 

appropriately identify the power spectral density (PSD) of the underlying Gaussian process; such 

that the desired PSD can be obtained using a proper nonlinear transformation along with the 

target PDF. The random fields were simulated numerically by Yamazaki and Shinozuka (1988) 

using the Gaussian PSD through iteration until the target PSD is achieved after transformation. A 

polynomial transformation of a Gaussian process was used by Ammon (1990). Using the same 

transformation he calculated back the Gaussian PSD based on the analytical relation between 

polynomial transformations on the power spectrum. Iyengar and Jaiswal (1993) have used a 

transformed process to develop a new non-Gaussian model for random excitations. They also 

found the level crossing and peak statistics of the non-Gaussian model and compared with the 

Gaussian model and observed data. This kind of level crossing detailed discussion of a non-

Gaussian process, which is expressed in terms of a Gaussian process is studied by Grigoriu 

(1984). Gurley et al (1996) developed a non-Gaussian model using Hermite polynomial 

transformation through optimization of the parameters such as skewness and kurtosis. This is 

based on the minimization of sum of the squares of these two parameters as a condition to adjust 

the other parameters, which they called it as modified direct transformation. This method was 

shown to perform well compared to the regular direct transformation method. Sadek and Simiu 

(2002) identified that the gamma distribution and a normal distribution are appropriate for 

estimating the peaks corresponding to the longer and shorter tail of the time series respectively. 

The distribution of the peaks is then estimated by using the standard translation processes 

approach. A non-Gaussian peak factor analysis for univariate stationary non-Gaussian processes 

was discussed by Kwon and Kareem (2009). This was used for estimating expected positive and 

negative extremes of non-Gaussian processes of a time history of wind pressure fluctuations in 

the roof of a low-rise building. In all the above cases it is mentioned that the simulation of a non-

Gaussian process can be achieved in terms of function of the Gaussian process. Therefore in the 

present study a non-Gaussian model to simulate the rainfall process using a Gaussian process is 

developed. 

 

2. Rainfall Data  

 

Six sets of SWM rainfall data are considered here for further work. The first is the All India 

rainfall value (AIRF) representing the whole country, which is spatial average based on the sub-

regions.  The other five data chosen are for the four sub-regions and one subdivision along the 

west coast with high variability. In Figure 1, the six regions are marked for clarity (Ref: Long 

range forecasting update, IMD, April 2013). The basic details of the data for the period (1901-

2000) are shown in Table 1.  
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Table 1: Basic Statistics of Rainfall Data (1901-2000) 

 

 

 

 

 

 

 

 

 

 

 

AIRF-All India Rainfall CEIND–Central India NEIND-Northeast India NWIND-Northwest 

India PEIND-Peninsular India, COKNT-Coastal Karnataka. 

 

The first five data series are from the official reports of the India Meteorology Department 

(IMD). The data for the Coastal Karnataka subdivision is taken from the data base of the Indian 

Institute of Tropical Meteorology (http://www.tropmet.res.in).  

 
Figure 1: The four broad regions namely CEIND, NWIND, NEIND and PEIND of India and the 

one subdivision COKNT are marked in different colors 

Name Area (Sq Km) 
LTA 

(𝑚𝑅cm) 

LTD 

(𝜎𝑅cm) 
Skewness Kurtosis 

AIRF 32, 87,782 88.49 8.97 -0.22 2.67 

CEIND 11, 06,673 96.41 12.89 0.03 3.13 

NWIND 10, 10,719 61.60 11.53 0.14 3.18 

NEIND 5, 24,065 143.97 12.29 -0.29 3.14 

PEIND 6, 46,325 72.26 9.91 0.26 3.12 

COKNT 18,717 289.19 46.80 0.66 4.92 

COKNT 
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3. Methodology 

 

A situation arises very often to model time series data which is non-Gaussian, but contains some 

properties of a Gaussian process. This can be modeled as a function of Gaussian process. 

Rainfall process is one such example. Hence in this chapter an attempt has been made to model 

Indian monsoon rainfall as a function of Gaussian process. It is observed that rainfall 𝑅𝑖 , (𝑖 =
1,2 … . 𝑛) as a random variable is non-Gaussian. But it can be approximately represented by a 

log-normal distribution. Hence it is advantageous to transform the data series 𝑅𝑖 , for further 

analysis as  

𝑟𝑖 = 𝑙𝑜𝑔 (
𝑅𝑖

𝑚𝑅
)                                                                                                                                (1) 

 

The transformed series 𝑟𝑖 still has some small mean in it along with some standard deviation. 

Therefore 𝑟𝑖  
 is further standardized using the relation 𝑥𝑖 =

(𝑟𝑖−𝑚𝑟)

𝜎𝑟 
   , where 𝑚𝑟  is the long term 

average and 𝜎𝑟  the long term deviation of 𝑟  to obtain zero mean and unit standard deviation 

process. This standardization is required for the model to develop as a function of zero mean, 

unit standard deviation Gaussian process in this chapter. The standardization always helps in 

finding the parameters involved in the non-Gaussian model used in an easy way. The basic 

statistics of 𝑥𝑖 is presented in Table 2.  

 

Table 2: Basic Statistics of normalized data 𝑥𝑖 
 for the period 1901-2015 

 

 

 

 

 

 

 

 

 

 

 

Gaussianness of the random data  𝑥𝑖 
 can be checked using skewness and kurtosis in the data. 

According to the Jarque-Bera (JB) test (Jarque and Bera 1987) the null hypothesis is that the 

sample comes from a normal distribution with unknown mean and variance, against the 

alternative that it does not come from a normal distribution. For the null hypothesis 𝐻0 accepting 

the data as Gaussian, the tabulated JB statistic at 90% confidence is 3.75. The calculated 

statistics listed in the above table exceed (3.74) in the case of AIRF, NWIND and COKNT, 

where as the other cases reject the null hypothesis at 85% significance level. Therefore even after 

normalization, the data cannot be treated as Gaussian. Hence a non-Gaussian method is required 

for modeling and simulation.  

 

3.1. Modelling 

 

In this chapter a new non-Gaussian model for rainfall process is proposed. Influenced by the 

work of Iyengar and Jaiswal (1993) 𝑥(𝑡)  is expressed as a series with finite number of terms, 

Name 
(𝑚𝑥) 

LTA 

(𝜎𝑥) 

LTV 
Skewness Kurtosis JB Statistic 

AIRF 0 1 -0.4347 2.7487 3.92 

CEIND 0 1 -0.4059 3.2621 3.52 

NWIND 0 1 -0.6848 3.3838 9.69 

NEIND 0 1 -0.3792 3.3427 3.31 

PEIND 0 1 -0.3015 3.6038 3.26 

COKNT 0 1 -0.1420 4.2659 7.99 
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where the first term is a stationary Gaussian process with zero mean and unit standard deviation. 

The remaining terms would be the functions of the Gaussian process. The representation is as 

follows: 

𝑥(𝑡) = 𝑎0𝜑0(𝑡) + 𝑎1𝜑1(𝑡) + 𝑎2𝜑2(𝑡) + 𝑎3𝜑3(𝑡) + 𝑎4𝜑4 (𝑡) +                                               (2) 

Here 𝜑0 = 1 and 𝜑1 = 𝑢(𝑡) which is a Gaussian random process with zero mean and unit 

standard deviation. If only the first two terms are selected in equation (2), then we have a 

Gaussian model with mean 𝑎0 and variance 𝑎1
2 with the auto-correlation function being 

 𝑅𝑥𝑥(𝜏) = 𝑅𝑢𝑢(𝜏). But the data is non-Gaussian as shown earlier. Therefore in order to obtain 

non-Gaussianness in the process, the remaining 𝜑’s are selected as polynomials in 𝑢(𝑡) such that 

(𝜑𝑖  , 𝜑𝑗) (𝑖, 𝑗 = 1,2,3 … 𝑛) are uncorrelated between each other. Hence these 𝜑’s are obtained 

using Gram-Schmidt orthogonalization procedure. The number of terms in equation (2) is 

decided based on the reflection of the first four moments. The reflection of the first four 

moments is possible if we consider four terms in the series. The following equations for 𝜑’s are 

considered as the polynomials in 𝑢 to find the coefficients contained in them: 

𝜑0 = 1 , 𝜑1 = 𝑢 

𝜑2 = 𝐶20𝜑0 + 𝐶21𝜑1 + 𝐶22𝜑2𝑢2 

𝜑3 = 𝐶30𝜑0 + 𝐶31𝜑1 + 𝐶32𝜑2𝑢2 + 𝐶33𝜑3𝑢3                                                                              (3) 

 

Using the orthogonality conditions of 〈𝜑𝑖𝜑𝑗〉 = {
0, 𝑖 ≠ 𝑗
1, 𝑖 = 𝑗

 , and finding the unknowns in equation 

(3) we obtain the following equations for 𝜑’s 

𝜑2 =
1

√2
(𝑢2 − 1), 𝜑3 =

1

√6
(𝑢3 − 3𝑢) ,  𝜑4 =

1

√24
(𝑢4 − 6𝑢2 + 3)                                           (4) 

 

It can be easily observed that  𝜑’s are the normalized Hermite polynomials which are given by  

𝜑𝑘(𝑢) =
(−1)𝑘

√𝑘!
exp (

𝑢2

2
)

𝑑𝑘

𝑑𝑢𝑘
[exp (−

𝑢2

2
)]                                                                                     (5) 

 

Since the data is standardized, the mean value is zero, therefore 𝑎0 = 0 in equation (2). 

Substituting the values of 𝜑’s obtained in equation (4) in equation (2) we get 

𝑥(𝑡) = 𝑎0 + 𝑎1𝑢(𝑡) +
𝑎2

√2
(𝑢2(𝑡) − 1) +

𝑎3

√6
(𝑢3(𝑡) − 3𝑢(𝑡))                                                      (6) 

 

The variance of 𝑥 can be used as one of the equations to find unknowns in equation (2), i.e 
〈𝑥2〉 = 𝑎1

2 + 𝑎2
2 + 𝑎3

2                                                                                   (7) 

 

Similarly, we can use the higher order moments of 𝑥 to find the remaining unknowns. Hence we 

get the following: 

〈𝑥3〉 = 2√2𝑎2
3 + 3√2𝑎1

2𝑎2 + 9√2𝑎3
2𝑎2 + 6√3𝑎1𝑎2𝑎3 + 12𝑎1𝑎3𝑎4                                          (8) 

〈𝑥4〉 = 3𝑎1
4 + 15𝑎2

4 + 93𝑎3
4 + 36√6𝑎3

3𝑎1 + 4√6𝑎1
3𝑎3 + 48√6𝑎2

2𝑎1𝑎3 + 30𝑎1
2𝑎2

2 + 42𝑎1
2𝑎3

2 +
186𝑎2

2𝑎3
2                                                                                                                                       (9) 

 

Suppose if the model requirement is of zero skewness and kurtosis≠3, then a three term 

representation for 𝑥 would have been sufficient. Also from the Gaussianness of 𝑢 and the 

uncorrelatedness of 𝜑’s, the autocorrelation function of 𝑥 reduces to  

𝑅𝑥𝑥(𝜏) = ∑ 𝑎𝑖
2𝑅𝑢𝑢

𝑖 (𝜏)4
𝑖=1                                                                                                             (10) 
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Here 𝑎𝑖’s are found using equations (7-9). Therefore if the one-dimensional statistics and the 

autocorrelation 𝑅𝑥𝑥(𝜏) of the data are known then the modeling effort in the present approach 

reduces to finding the co-efficient 𝑎𝑖  and 𝑅𝑢𝑢(𝜏). 

  

4. Results   

 

For finding the values of  𝑎𝑖’s the first four moments are used as shown in equations (7-9). It is 

observed that these equations are non-linear equations in 𝑎𝑖’s. Therefore multiple roots for 𝑎𝑖’s  

are possible which may be real or complex. The present approach is interested in only real roots 

of  𝑎𝑖’s. All these real roots as possibilities are considered for modeling the PDF of the data. 

Hence the modeled non-Gaussian one dimensional PDF of 𝑥 for all possible real roots is 

compared with the sample PDF to arrive at the final conclusion of selection of  𝑎𝑖’s. The 

comparison of the non-Gaussian PDF with the sample PDF for all the possible real roots of the 

equation (7-9) is shown in Figure 1 for particular region. For example, for COKNT two sets of 

real roots are possible. They are: 

  

Set I: 𝑎1 = 0.9955, 𝑎2 = −0.0271, 𝑎3 = 0.0906 

Set II: 𝑎1 = 0.8115, 𝑎2 = −0.0645, 𝑎3 = −0.5808 

 

For each of these sets of coefficients, the PDF of 𝑥 is obtained by transforming the Gaussian 

PDF of  𝑢 numerically. The sample histogram is also shown in Figure 2 as cross marks for 

comparison. From this comparison, the set of roots that follow the sample histogram is selected 

as the desired roots for modeling the data as non-Gaussian model. It is observed that Set I values 

follow the data distribution correctly, whereas the Set II roots show a sudden dip at the tails of 

the distribution. Therefore the distribution which is able to capture the extremes along with the 

other places is considered as the right model for the data. Hence the Set I roots are selected to 

model the data distribution and will be the right PDF for the observed data. Similarly the values 

of  𝑎𝑖’s, which are suitable for the remaining regions are based on the sample histogram match 

with the PDF’s obtained through the different set of roots of  𝑎𝑖’s. The 𝑎𝑖’s selected through this 

procedure using the first four moments for all the regions considered for the present study is 

shown in Table 3. Using the particular set of values of  𝑎𝑖 ’s  the desired non-Gaussian model is 

developed for the data. The visual comparison between the data distribution as the sample 

histogram and selected model for all the regions is shown in Figure 3. This comparison is shown 

along with the Gaussian distribution to show that this non-Gaussian model performs better than 

the Gaussian model. Specifically in the extremes or tails, the non-Gaussian model is able to 

capture the distribution better in comparison with the Gaussian model. Also it is observed that 

the PSD and the autocorrelation function of the estimated values can be exactly reproduced by 

solving equation (11).  

 

Table 3: The values of 𝑎1 ,  𝑎2, 𝑎3 using the first four moments of the data in equations (6-8) 

Name AIRF CEIND NWIND NEIND PEIND COKNT 

𝑎1 0.9953 0.9958 0.9929 0.9962 0.9975 0.9955 

 𝑎2 -0.1113 -0.0806 -0.1718 -0.0865 -0.0541 -0.0271 

𝑎3 -0.0207 -0.0237 -0.0015 0.0168 0.0449 0.0906 
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Figure 2: Sample histogram for the observed data of COKNT and the modeled solid line PDF for  

set I values and dotted line PDF for set II values 

 

5. Discussion 

 

In this paper, a new non-Gaussian model as a function of Gaussian process is developed for all 

India, its four regions and a subdivision from IMD. The functions of a Gaussian process are 

Hermite polynomials. The coefficients of the series are found using the first four moments of the 

standardized data also known as moment estimation method.  The coefficients of the regions 

used for the present study is tabulated in Table 2. Using these coefficients with the help of 

Gaussian density, the non-Gaussian distribution obtained by using transformation numerically 

The comparison between the sample histogram of all the regions and subdivision and the non-

Gaussian density function is shown in Figure 2. Along with this the Gaussian density also plotted 

to show that the non-Gaussian density performs better than the Gaussian density function, 

specifically at the extremes. This is clearly visible from the figure. For this kind of modeling the 

higher order moments such as skewness and kurtosis are important as it can the parameters to 

show that the probability distribution is Gaussian or not. Hence these are used to obtain the 

unknowns. It is clearly visible that the skewness and the kurtosis are matched in the figure 

shown.  
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Figure 3: Comparison between the observed and the modeled PDF. x x x represents the sample 

histogram, dotted line is a Gaussian model and the solid line is a non-Gaussian model 

 

6. Conclusions  

 

The model developed for all India SWM rainfall data, its broad regions and a subdivision is a 

non-Gaussian model. This is expressed as function of Gaussian process, which are Hermite 

polynomials. The advantage of this model is that the properties of the Gaussian process can be 

used in identifying the properties of the non-Gaussian model. The first four moments of the data 

have been used to find the unknowns present in the non-Gaussian model. At 5% significance 

level this model fits to the rainfall data in comparison with the Gaussian model. This method is 

suggested for the smaller spatial scales such as seasonal data series, monthly data series and so 

on. It is expected that this model performs better in large size data which is obviously can be in 

smaller temporal scales.  
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